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Abstract 
  Multiprocessor systems on chip have out of order (OOO) execution schemes shows incredible promise 
for task-level parallelism. However the main challenge of the OOO execution lies in the analysis of the inter 
task dependences .In this paper, we address this challenge by applying the instruction-level score boarding 
algorithm at the task level by using Particle swarm Optimization algorithm (PSO).The basic PSO algorithm to 
optimize the task runtime by minimizing the make span of a particular task set, and in the same time, 
maximizing resource utilization. Due to the changes, we should increase the speed and performance of the 
circuit. We introduce both software  based static and dynamic implementations on top of a heterogeneous 
MPSOC prototyped on a Field Programmable Gate Array fabric.  
Keywords - Multiprocessors systems-on chip (MPSOC), Out of order (OOO) execution, score boarding 
algorithm, task level scheduling. 
 
1. Introduction 
 Multiprocessor systems on chip (MPSOC) have emerged as a solution in modeling embedded 
system because they provide acceptable tradeoff between the cost and performance of the system 
under design. With rising complexity of the modern embedded systems, the goal is to produce a 
design of high performance with time to market acceptable for consumer electronics. MPSOC is 
comprised out of various processing element and enable multiple HW/SW partitioning, mapping and 
scheduling option. Optimization and automation of the MPSOC system synthesis is a complex 
problem [2].RECONFIGURABLE computing has made major in road with the advent of large scale 
field programmable gate array (FPGAs). It is predicted that multiprocessor system on chip 
(MPSOC) will greatly improve computational capabilities of heterogeneous platform in the near 
future [1].Therefore we expect great promise by combining heterogeneous MPSOC with 
reconfigurable computing. Learning from current cutting-edge disciplines, heterogeneous MPSOC 
combine multiple components in a modular manner, (e.g.) microprocessor, digital signal processor 
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(DSP), or Intellectual property (IP) core/ accelerators. The execution of out of order(OOO) task 
poses significant challenge to schedule them and map them on the processing element. 
 At this level, the major drawback of current programming models is that programmer need to 
handle the task assignments manually, which would seriously increase the burden of programmer 
.the OOO execution of instruction is dealt with by scoreboarding and Tomasulo algorithm [2] at the 
instruction level. Both approaches provide techniques for OOO instruction execution when there are 
sufficient computational resources and no data hazards among instruction. The Tomasulo algorithm 
is more complex as it can also detect write after write (WAW) and write after read (WAR) hazards 
through register remaining. Consequently , as programming models require more experience from 
the programmers, the extension from the instruction-level scheduling algorithm to task level 
provides an alternate methodology to utilize MPSOC platform effectively .In this paper ,we extend 
the instruction level score boarding algorithm to the level of task. The reason why algorithm are as 
follows  

1. Scoreboarding provides a light-weight task hazards engine for OOO execution. The 
architecture is simpler which brings smaller scheduling overheads. 

2. For task-level parallelization, WAW and WAR hazards do not happens as much as at the 
instruction level. Most programmers intend to use different parameters in the case of WAR 
and WAW hazards. Therefore, introducing a mechanism as complex as the Tomasulo 
algorithm is not necessary. 

 An OOO execution scheme for sequential task execution by using PSO algorithm an MPSOC 
platform is proposed in this paper. The main contributions are listed as follow 

1. We apply a traditional-level score boarding algorithm at the task level. Here, we define 
specific tasks as assignments for functional units in MPSOC system (e.g.) IP cores and 
processor. 

2. We compose task sequence with different dependences to test the performance of our 
approach and use Joint Photographic Expert Group (JPEG) encoding to represent a real life 
application in our case study. 

3. A prototype system is implemented on an FPGA board as an experimental platform. Our 
result demonstrates the performance of the scoreboarding algorithm at the task level. 

4. We propose both dynamic and static forms of the score boarding algorithm called runtime 
MP score boarding and task dependence analyzer (TDA). 
The remainder of paper is organized as follows: Section I present the problem of OOO 

execution on an MPSOC and the motivation of our approach. section II ,we discuss more details of 
our design including the hardware platform ,the programming, the software/hardware code sign 
flow, the score boarding process flow, and the design of static/dynamic scheme. 

 
Section- I 
Out-of-Order Execution Model 
 We follow the description of dataflow execution model in [26], which is extended to a general 
heterogeneous multi core computing scenario. Dataflow machines handle dependences using tokens 
to signal production and availability of data. We employ a similar technique, but make two crucial 
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changes. First, we associate tokens with objects instead of individual memory locations to match the 
data abstraction .Second, we assign each object multiple read tokens and a single write token to 
manage both production and consumption of data. In this description, data dependence will occur in 
the following scenarios. 

1. WAW Hazard: Some tasks try to acquire write token of an object whose write token is held 
by another task. 

2. WAR Hazard: Some tasks try to acquire write token of an object whose read tokens are held 
by some other tasks. 

3. RAW Hazard: Some tasks try to acquire read token of an object whose write token is held 
by another task. 
 

 
 

Dependence Graphs 
Tasks 
1 :{c},{a,b};      
2 :{d},{c}; 
3 :{f},{e};    
4 :{h},{g};  
5 : {i},{d,f};      
6 : {j},{h,i}; 
 
 Fig. 1 shows the basic OoO execution model on a platform with two general-purpose processors 
(P1 and P2). We abstract tasks as OP: {write set}, {read set} pattern, as shown in Fig. 1(a). As 
described above, OP stands for the operand of different tasks, and the write/read set contains the 
objects whose write/read token(s) should be acquired by tasks before execution. In Fig. 1, we 
indicate the objects as letters (e.g., a, b, and c). In general, we can divide the process into two steps. 
First, to obtain the task dependence graph, the dependence between tasks should be analyzed. Fig. 
1(b) shows the data dependence between the tasks. For example, T 1 acquires write token of object 
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c, and thus it has an inter task data dependence [solid arrow lines in Fig. 1(b)] with T 2, which needs 
read token of object c. Likewise, T2 has a data dependence with T5 on object d, and T 3 has a data 
dependence with T 5 on object f as well. These dependences must be preserved if the dynamic 
execution is to maintain the sequential appearance of the static program. Second, tasks are mapped 
to a hardware platform according to the task dependence graph. Fig. 1(c) shows the execution of the 
code for the task execution model on dual processors. The dotted lines indicate the communication 
between processors. The execution starts with task T 1. Attempts to acquire a read token of object 
a/b and a write token of object c are successful. Hence, T 1 is submitted for execution on an 
available core (P1). Meanwhile, attempts to acquire a write token of object e and a read token of 
object f are successful, and thus T 3 is scheduled to execute (on core P2). The T 1 execution 
advances to T 2, which is shelved because a read token of object c cannot be acquired since T 1 is 
still being executed and holding the write tokens of object c. When the execution of T1 is finished, it 
will release the write token of object c, which means T2 now can be guaranteed a read token of 
object c. Therefore, T 2 can be executed once all its read tokens are ready (in this case, only the 
token of object c). 
 Considering MPSoC, however, it still poses significant challenges to improve task-level 
parallelism. To address this problem, OoO execution mentioned above is an effective way. 
Nevertheless, there are more problems presented, such as how to detect data dependences and how 
to map tasks to a heterogeneous MPSoC platform. However, most previous works have been done 
on a homogeneous platform. However, the task scheduling will become more complicated when the 
platform is heterogeneous two kinds of specific processors (P1 and P2), in which P1 can do tasks T 
x and P2 can do task Gx, respectively. 

 
 

Picture 2 Dependence Graphs 
Tasks 
T 1 :{c},{a,b}; 
T 2 :{d},{c}; 
T 3 :{f},{e}; 
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T 4 :{h},{g}; 
T 5 : {i},{d,f};    
T 6 : {j},{h,i}; 
 
 Compared to the basic OoO execution model in Fig. 1, it is clear that the step of dependence 
analyzing is same while the task mapping is different and more complicated. In addition, even 
without the dataflow dependences, structural dependences are also required to be taken into 
consideration. The hazards between dynamic instances of the same function may not manifest at run 
time, e.g., dynamic instances of the tasks T x, T 1, and T 2 can be issued at the same time only when 
there are adequate processors. How to handle these dependences is the key issue of the OoO 
execution on heterogeneous MPSoC. In our approach, we handle these dependences in two ways: 
dynamic and static ways. Both are based on the task-level score boarding algorithm, which is 
extended from instruction level. Subsequently, we do tradeoffs between dynamic and static 
manifestations. 
 
Section II 
Design Specification 
Hardware Architecture 
 To demonstrate our approach, we built an MPSoC prototype system on an FPGA board. Fig. 3 
shows the components of target system. 

1. One general-purpose processor serves as a scheduling processor, which is employed to 
perform task scheduling in dynamic scheme or to do preprocessing in a static way. The 
original task sequence will be sent to the scheduling processor through application 
interfaces. 

2. Several general-purpose processors connected with the scheduling processor provide a run-
time environment for software tasks. They can execute different types of software tasks. 

3. Several heterogeneous IP cores serve as functional units (indicated with different shapes) 
are responsible for specific tasks to achieve acceleration. In particular, the IP cores can be 
reconfigured from IP library to fit in different applications. 

4. The on-chip interconnect is used for data transmission between scheduler and other 
hardware blocks (computing processors, IP cores). Considering the frequent data exchanges 
between the scheduling processor and other computing elements, we select star topology 
with the scheduler-centric interconnect structure. 

5. Other peripheral parts are connected through the bus-based interconnect, such as universal 
asynchronous receiver/transmitter, double data rate dynamic RAM (DDR DRAM), System 
ACE controller, Ethernet controller, and time and interrupt controller. Based on the 
hardware prototype, a task-level OoO execution scheme utilizing score boarding algorithm 
will be illustrated in the following sections. 
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Block Diagram 
 

Software Design Flow 
 In the software design flow, programming model and libraries are provided for users to guide 
the implementation of source code with annotations. There are two kinds of source files, first is 
Main. c, which is the main program of the application, and the others are Apps.c, which are the 
application library on each computing processor. Then, the codes with annotations will be processed 
by the OoO compiler front-end, through which annotated codes and function libraries are merged 
into translated regular source codes. The regular source codes shall be further processed by the 
Xilinx software tool chain to generate the executable files. The executable file of main program will 
be executed on scheduling processor and the executable files of application libraries will be loaded 
into each computing processor. A certain function will be executed when requested by the main 
program. All the procedures are transparent to the user. What is required from programmers is to use 
simple annotations (e.g., #pragma) in the sequential program to indicate which parts of code will be 
executed concurrently. In the dynamic implementation, the tasks will be mapped to target functional 
units dynamically, and in the static way, some wait operations will be inserted to the sequential 
program based on the preanalysis 
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Scoreboarding Process at Task Level 
 This section describes how the task sequence is issued and executed using the scoreboarding 
scheme [24]. In our approach, we treat all computing resources (e.g., processors, IP cores) as 
functional units. Computing processors are special functional units on which every kind of tasks can 
be executed while only one kind of task can be executed on IP cores. 
 We follow the hardware first principle in hardware/software partition. That is to say, when the 
IP cores are free, task requests will be sent to IP core. Otherwise, they will be sent to processors. In 
the implementation, we assigned a unique priority number to each functional unit according to its 
performance, which are listed in Table I (the lower priority value, the higher its actual priority). The 
most important data structures of the task-level score boarding algorithm are three tables: an 
instruction status table to indicate the status (e.g., issued, read operands, task mapping, executing, 
and write result) of tasks, a functional unit status table (FUT) to indicate the status (e.g., busy, free, 
type, priority) of each functional unit, and a register status table (RST) to indicate the objects 
(implemented as registers) status. All these tables are derived from the instruction-level score 
boarding algorithm. For the execution flow, the algorithm is divided into five stages: issue stage, 
read operands stage, task mapping stage, execution stage, and write result stage. Table II showed the 
overview of the five stages and they are described in more detail in the following. 
 1)Issue: In this stage, structural and WAW hazards are detected. First, the RST is checked to 
make sure there are no other active tasks with the same destination variable to avoid WAW hazards. 
And then, to detect the structural hazards, the FUT is scanned in priority order (from high to low) to 
find an available functional unit for a certain task. Since the priority of IP cores are always higher 

both WAW and structural hazards are not detected, the task can be issued. Otherwise, the task will 
stall, and no further tasks can be issued until these hazards are cleared. 
 2) Read Operands: The score boarding monitors the availability of the source operands. If the 
operands are not yet available, the score boarding monitor will wait for the results. A source operand 
is available if no earlier issued active task is going to write it. When both operands are available, the 
task will be dispatched to a certain functional unit. The score boarding resolves RAW hazards in this 
step, and tasks may be executed OoO. 
 3) Task Mapping: In the issue stage, the allocated functional unit ensures that there are no 
structural hazards. However, after the read operands stage is finished, there may be other available 
functional units that have higher priority. In order to find some functional units with higher priority 
than the current one, the FUT is scanned in the predefined priority order. Then, the tasks are 
reallocated onto the functional units with higher priority. Therefore, this stage is also called task 
reallocation stage. The main purpose of this stage is to choose an appropriate functional unit on 
which the current task can finish as early as possible.  
 If the reallocated task and the task in issue stage are requesting the same functional unit, we give 
the tasks in the mapping stage priority and the tasks in the issue stage will stall until there is an 
available functional unit, because the task in mapping stage can finish execution earlier. 
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 4) Execution: The functional unit begins execution once it has received its operands. When the 
result is ready, it notifies the scheduling processor that it has completed execution. Task distribution 
and data transfer are both performed through an on-chip interconnect. Using the hardware 
interconnects the execution results are returned through interrupts. One interrupt controller is 
integrated to detect interrupt request signals from all the interconnect channels. The interrupt handler 
assigns the variables with results. In our proposed architecture, since the results from different tasks 
may be transferred back at the same time, a first-come-first-serve policy is used to deal with 
interrupts, and no interrupt preempt is supported. 
 
Section III 
Proposed System 
Scheduling based on Particle Swarm Optimization 
 In this section, we present a scheduling heuristic for dynamically scheduling workflow 
applications. The heuristic optimizes the cost of task-resource mapping based on the solution given 
by particle swarm optimization technique. 
 

 
 
Particle Swarm Optimization (PSO) 
 Particle Swarm Optimization (PSO) is a swarm-based intelligence algorithm [8] influenced by 
the social behavior of animals such as a flock of birds finding a food source or a school of fish 
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protecting themselves from a predator. A particle in PSO is analogous to a bird or fish flying 
through a search (problem) space. The movement of each particle is co-ordinate by a velocity which 
has both magnitude and direction. Each particle position at any instance of time is influenced by its 
best position and the position of the best particle in a problem space. The performance of a particle 
is measured by a fitness value, which is problem specific. The PSO algorithm is similar to other 
evolutionary algorithms. In PSO, the population is the number of particles in a problem space. 
Particles are initialized randomly. Each particle will have a fitness value, which will be evaluated by 
a fitness function to be optimized in each generation. Each particle knows its best position p best and 
the best position so far among the entire group of particles g best. The p best of a particle is the best 
result (fitness value) so far reached by the particle, whereas g best is the best particle in terms of 
fitness in an entire population. In each generation the velocity and the position of particles will be 
updated as in Eq 6 and 7, respectively. 
 The PSO algorithm has been introduced by Kennedy and Eberhartin 1995 [6], [24]. According 
to the PSO algorithm uses two components:  

a. The scheduling heuristic as listed in Algorithm 1  
b. The PSO steps for task-resource mapping optimization as listed in Algorithm 2.  

 
Algorithm 1: Scheduling Heuristic 

1:  Calculate average computation cost of all tasks in all compute resources. 
2:  Calculate average cost of (communication/size of data between resources. 
3:  Set task node weight wkj as average computation cost. 
4:  Set edge weight ek1, K2 as size of file transferred between tasks. 
5:  Compute PSO ({ti}) /* a set of all tasks i  k*/. 
6:  repeat. 
7:  for {ti}T do. 
8:  Assign tasks {ti} to resources {pj} according to the solution provided by PSO. 
9:  end for. 
10:  Dispatch all the mapped tasks. 
11:  Wait for polling time. 
12:  Update the ready task list. 
13:  Update the average cost of communication between resources according to the current 

network load. 
14:  Compute PSO ({ti}). 
15:  until there are unscheduled tasks. 

 
Algorithm 2: PSO algorithm. 

1:  Set particle dimension as equal to the size of ready tasks in {ti} T. 
2:  Initialize particles position randomly from PC =1... j and velocity vi randomly. 
3:  For each particle, calculate its fitness value as in Equation4. 
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4:  If the fitness value is better than the previous best pbest, set the current fitness value as the 
new pbest. 

5:  After Steps 3 and 4 for all particles, select the best particle as gbest. 
6:  For all particles, calculate velocity using Equation 6 and update their positions using 

Equation 7. 
7:  If the stopping criteria or maximum iteration is not satisfied, repeat from Step 3. 

 
Graph Analysis  
 Every test case has been run both dynamically and statically. Presents the execution time of each 
test case. We take four pillars in one group to illustrate four kinds of time cost. The first pillar stands 
for time consumption of serial execution, that is to say, the tasks are sent serially. The second pillar 
indicates the execution time of task sequences using dynamic scheduling method. The tasks are sent 
to scheduling processor with run-time score boarding running on it. The third pillar represents the 
execution time of task sequences in static preanalysis way (the tasks are preprocessed by TDA 
before sent to hardware platform). The last pillar refers to the ideal parallel execution time of tasks 
ignoring overheads. There are four groups of pillars in a diagram indicating the test cases with 
different dependence degrees, ranging from 25% to 100%. In addition, the average execution time of 
one task has been configured from 5k to 160k cycles and one diagram stands for one configuration. 

 

 
 Speedup comparison. In each group, the left bar is the speedup using the dataflow execution, the 
middle bar is the practical speedup on our experimental platform, and the right bar is the ideal 
speedup using our platform. 



Volume 3  Issue 1 June 2017                      www.irjes.psyec.edu.in 

 

 
International Research Journal of Engineering Sciences                                                                                                     20 
 

 

 
Execution Time 

 
Conclusion 
 According to this paper the application of the instruction-levels scoreboarding technique to the 
task level that is commonly executed in current-day heterogeneous MPSoCs. Furthermore, we 
introduced both static and dynamic implementations of scoreboarding in software. The static 
implementation is to obtain the dataflow graph prior to the execution. The dynamic implementation 
analyzes the intertask dependences at run time. 
 We prototyped our approaches on an FPGA platform with two scenarios. The first scenario 
entails four manually composed test cases with different dependence degrees, and the second 
scenario entails the JPEG encoding as a real-life application. Our experimental results show that our 
approach can achieve 95.75% 98.68% of the theoretical speedup. Finally, we performed an analysis 
such as when to choose for either of our approaches (static versus dynamic).  
 As future work, there are numerous directions worth pursuing. We plan to study more hardware 
extensions, investigate how the scoreboarding approach can be applied to high-performance DSP or 
GPU cores where multiple functional units or vectors may execute in massive parallel, and 
investigate how the scoreboarding scheme works under reconfigurable fabric conditions to further 
improve the performance. 
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