
Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 10

RECONFIGURABLE HETROGENIOUS MPSOC USING

PARTICLE SWARM OPTIMIZATION

C.Anupriya

Final Year Student, Department of Electronics and Communication Engineering,
Raja College of Engineering and Technology, Madurai, Tamilnadu, India

E.Sushmitha

Final Year Student, Department of Electronics and Communication Engineering,
Raja College of Engineering and Technology, Madurai, Tamilnadu, India

E.Gopinath

Assistant Professor, Department of Electronics and Communication Engineering,
Raja College of Engineering and Technology, Madurai, Tamilnadu, India

Abstract
 Multiprocessor systems on chip have out of order (OOO) execution schemes shows incredible promise
for task-level parallelism. However the main challenge of the OOO execution lies in the analysis of the inter
task dependences .In this paper, we address this challenge by applying the instruction-level score boarding
algorithm at the task level by using Particle swarm Optimization algorithm (PSO).The basic PSO algorithm to
optimize the task runtime by minimizing the make span of a particular task set, and in the same time,
maximizing resource utilization. Due to the changes, we should increase the speed and performance of the
circuit. We introduce both software based static and dynamic implementations on top of a heterogeneous
MPSOC prototyped on a Field Programmable Gate Array fabric.
Keywords - Multiprocessors systems-on chip (MPSOC), Out of order (OOO) execution, score boarding
algorithm, task level scheduling.

1. Introduction
 Multiprocessor systems on chip (MPSOC) have emerged as a solution in modeling embedded
system because they provide acceptable tradeoff between the cost and performance of the system
under design. With rising complexity of the modern embedded systems, the goal is to produce a
design of high performance with time to market acceptable for consumer electronics. MPSOC is
comprised out of various processing element and enable multiple HW/SW partitioning, mapping and
scheduling option. Optimization and automation of the MPSOC system synthesis is a complex
problem [2].RECONFIGURABLE computing has made major in road with the advent of large scale
field programmable gate array (FPGAs). It is predicted that multiprocessor system on chip
(MPSOC) will greatly improve computational capabilities of heterogeneous platform in the near
future [1].Therefore we expect great promise by combining heterogeneous MPSOC with
reconfigurable computing. Learning from current cutting-edge disciplines, heterogeneous MPSOC
combine multiple components in a modular manner, (e.g.) microprocessor, digital signal processor

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 11

(DSP), or Intellectual property (IP) core/ accelerators. The execution of out of order(OOO) task
poses significant challenge to schedule them and map them on the processing element.
 At this level, the major drawback of current programming models is that programmer need to
handle the task assignments manually, which would seriously increase the burden of programmer
.the OOO execution of instruction is dealt with by scoreboarding and Tomasulo algorithm [2] at the
instruction level. Both approaches provide techniques for OOO instruction execution when there are
sufficient computational resources and no data hazards among instruction. The Tomasulo algorithm
is more complex as it can also detect write after write (WAW) and write after read (WAR) hazards
through register remaining. Consequently , as programming models require more experience from
the programmers, the extension from the instruction-level scheduling algorithm to task level
provides an alternate methodology to utilize MPSOC platform effectively .In this paper ,we extend
the instruction level score boarding algorithm to the level of task. The reason why algorithm are as
follows

1. Scoreboarding provides a light-weight task hazards engine for OOO execution. The
architecture is simpler which brings smaller scheduling overheads.

2. For task-level parallelization, WAW and WAR hazards do not happens as much as at the
instruction level. Most programmers intend to use different parameters in the case of WAR
and WAW hazards. Therefore, introducing a mechanism as complex as the Tomasulo
algorithm is not necessary.

 An OOO execution scheme for sequential task execution by using PSO algorithm an MPSOC
platform is proposed in this paper. The main contributions are listed as follow

1. We apply a traditional-level score boarding algorithm at the task level. Here, we define
specific tasks as assignments for functional units in MPSOC system (e.g.) IP cores and
processor.

2. We compose task sequence with different dependences to test the performance of our
approach and use Joint Photographic Expert Group (JPEG) encoding to represent a real life
application in our case study.

3. A prototype system is implemented on an FPGA board as an experimental platform. Our
result demonstrates the performance of the scoreboarding algorithm at the task level.

4. We propose both dynamic and static forms of the score boarding algorithm called runtime
MP score boarding and task dependence analyzer (TDA).
The remainder of paper is organized as follows: Section I present the problem of OOO

execution on an MPSOC and the motivation of our approach. section II ,we discuss more details of
our design including the hardware platform ,the programming, the software/hardware code sign
flow, the score boarding process flow, and the design of static/dynamic scheme.

Section- I
Out-of-Order Execution Model
 We follow the description of dataflow execution model in [26], which is extended to a general
heterogeneous multi core computing scenario. Dataflow machines handle dependences using tokens
to signal production and availability of data. We employ a similar technique, but make two crucial

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 12

changes. First, we associate tokens with objects instead of individual memory locations to match the
data abstraction .Second, we assign each object multiple read tokens and a single write token to
manage both production and consumption of data. In this description, data dependence will occur in
the following scenarios.

1. WAW Hazard: Some tasks try to acquire write token of an object whose write token is held
by another task.

2. WAR Hazard: Some tasks try to acquire write token of an object whose read tokens are held
by some other tasks.

3. RAW Hazard: Some tasks try to acquire read token of an object whose write token is held
by another task.

Dependence Graphs
Tasks
1 :{c},{a,b};
2 :{d},{c};
3 :{f},{e};
4 :{h},{g};
5 : {i},{d,f};
6 : {j},{h,i};

 Fig. 1 shows the basic OoO execution model on a platform with two general-purpose processors
(P1 and P2). We abstract tasks as OP: {write set}, {read set} pattern, as shown in Fig. 1(a). As
described above, OP stands for the operand of different tasks, and the write/read set contains the
objects whose write/read token(s) should be acquired by tasks before execution. In Fig. 1, we
indicate the objects as letters (e.g., a, b, and c). In general, we can divide the process into two steps.
First, to obtain the task dependence graph, the dependence between tasks should be analyzed. Fig.
1(b) shows the data dependence between the tasks. For example, T 1 acquires write token of object

P1

 P2

6

3 4

5 2

1

4 3

6 5 2 1

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 13

c, and thus it has an inter task data dependence [solid arrow lines in Fig. 1(b)] with T 2, which needs
read token of object c. Likewise, T2 has a data dependence with T5 on object d, and T 3 has a data
dependence with T 5 on object f as well. These dependences must be preserved if the dynamic
execution is to maintain the sequential appearance of the static program. Second, tasks are mapped
to a hardware platform according to the task dependence graph. Fig. 1(c) shows the execution of the
code for the task execution model on dual processors. The dotted lines indicate the communication
between processors. The execution starts with task T 1. Attempts to acquire a read token of object
a/b and a write token of object c are successful. Hence, T 1 is submitted for execution on an
available core (P1). Meanwhile, attempts to acquire a write token of object e and a read token of
object f are successful, and thus T 3 is scheduled to execute (on core P2). The T 1 execution
advances to T 2, which is shelved because a read token of object c cannot be acquired since T 1 is
still being executed and holding the write tokens of object c. When the execution of T1 is finished, it
will release the write token of object c, which means T2 now can be guaranteed a read token of
object c. Therefore, T 2 can be executed once all its read tokens are ready (in this case, only the
token of object c).
 Considering MPSoC, however, it still poses significant challenges to improve task-level
parallelism. To address this problem, OoO execution mentioned above is an effective way.
Nevertheless, there are more problems presented, such as how to detect data dependences and how
to map tasks to a heterogeneous MPSoC platform. However, most previous works have been done
on a homogeneous platform. However, the task scheduling will become more complicated when the
platform is heterogeneous two kinds of specific processors (P1 and P2), in which P1 can do tasks T
x and P2 can do task Gx, respectively.

Picture 2 Dependence Graphs
Tasks
T 1 :{c},{a,b};
T 2 :{d},{c};
T 3 :{f},{e};

3

2 2

31

1

P2 12

3

321

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 14

T 4 :{h},{g};
T 5 : {i},{d,f};
T 6 : {j},{h,i};

 Compared to the basic OoO execution model in Fig. 1, it is clear that the step of dependence
analyzing is same while the task mapping is different and more complicated. In addition, even
without the dataflow dependences, structural dependences are also required to be taken into
consideration. The hazards between dynamic instances of the same function may not manifest at run
time, e.g., dynamic instances of the tasks T x, T 1, and T 2 can be issued at the same time only when
there are adequate processors. How to handle these dependences is the key issue of the OoO
execution on heterogeneous MPSoC. In our approach, we handle these dependences in two ways:
dynamic and static ways. Both are based on the task-level score boarding algorithm, which is
extended from instruction level. Subsequently, we do tradeoffs between dynamic and static
manifestations.

Section II
Design Specification
Hardware Architecture
 To demonstrate our approach, we built an MPSoC prototype system on an FPGA board. Fig. 3
shows the components of target system.

1. One general-purpose processor serves as a scheduling processor, which is employed to
perform task scheduling in dynamic scheme or to do preprocessing in a static way. The
original task sequence will be sent to the scheduling processor through application
interfaces.

2. Several general-purpose processors connected with the scheduling processor provide a run-
time environment for software tasks. They can execute different types of software tasks.

3. Several heterogeneous IP cores serve as functional units (indicated with different shapes)
are responsible for specific tasks to achieve acceleration. In particular, the IP cores can be
reconfigured from IP library to fit in different applications.

4. The on-chip interconnect is used for data transmission between scheduler and other
hardware blocks (computing processors, IP cores). Considering the frequent data exchanges
between the scheduling processor and other computing elements, we select star topology
with the scheduler-centric interconnect structure.

5. Other peripheral parts are connected through the bus-based interconnect, such as universal
asynchronous receiver/transmitter, double data rate dynamic RAM (DDR DRAM), System
ACE controller, Ethernet controller, and time and interrupt controller. Based on the
hardware prototype, a task-level OoO execution scheme utilizing score boarding algorithm
will be illustrated in the following sections.

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 15

Block Diagram

Software Design Flow
 In the software design flow, programming model and libraries are provided for users to guide
the implementation of source code with annotations. There are two kinds of source files, first is
Main. c, which is the main program of the application, and the others are Apps.c, which are the
application library on each computing processor. Then, the codes with annotations will be processed
by the OoO compiler front-end, through which annotated codes and function libraries are merged
into translated regular source codes. The regular source codes shall be further processed by the
Xilinx software tool chain to generate the executable files. The executable file of main program will
be executed on scheduling processor and the executable files of application libraries will be loaded
into each computing processor. A certain function will be executed when requested by the main
program. All the procedures are transparent to the user. What is required from programmers is to use
simple annotations (e.g., #pragma) in the sequential program to indicate which parts of code will be
executed concurrently. In the dynamic implementation, the tasks will be mapped to target functional
units dynamically, and in the static way, some wait operations will be inserted to the sequential
program based on the preanalysis

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 16

Scoreboarding Process at Task Level
 This section describes how the task sequence is issued and executed using the scoreboarding
scheme [24]. In our approach, we treat all computing resources (e.g., processors, IP cores) as
functional units. Computing processors are special functional units on which every kind of tasks can
be executed while only one kind of task can be executed on IP cores.
 We follow the hardware first principle in hardware/software partition. That is to say, when the
IP cores are free, task requests will be sent to IP core. Otherwise, they will be sent to processors. In
the implementation, we assigned a unique priority number to each functional unit according to its
performance, which are listed in Table I (the lower priority value, the higher its actual priority). The
most important data structures of the task-level score boarding algorithm are three tables: an
instruction status table to indicate the status (e.g., issued, read operands, task mapping, executing,
and write result) of tasks, a functional unit status table (FUT) to indicate the status (e.g., busy, free,
type, priority) of each functional unit, and a register status table (RST) to indicate the objects
(implemented as registers) status. All these tables are derived from the instruction-level score
boarding algorithm. For the execution flow, the algorithm is divided into five stages: issue stage,
read operands stage, task mapping stage, execution stage, and write result stage. Table II showed the
overview of the five stages and they are described in more detail in the following.
 1)Issue: In this stage, structural and WAW hazards are detected. First, the RST is checked to
make sure there are no other active tasks with the same destination variable to avoid WAW hazards.
And then, to detect the structural hazards, the FUT is scanned in priority order (from high to low) to
find an available functional unit for a certain task. Since the priority of IP cores are always higher

both WAW and structural hazards are not detected, the task can be issued. Otherwise, the task will
stall, and no further tasks can be issued until these hazards are cleared.
 2) Read Operands: The score boarding monitors the availability of the source operands. If the
operands are not yet available, the score boarding monitor will wait for the results. A source operand
is available if no earlier issued active task is going to write it. When both operands are available, the
task will be dispatched to a certain functional unit. The score boarding resolves RAW hazards in this
step, and tasks may be executed OoO.
 3) Task Mapping: In the issue stage, the allocated functional unit ensures that there are no
structural hazards. However, after the read operands stage is finished, there may be other available
functional units that have higher priority. In order to find some functional units with higher priority
than the current one, the FUT is scanned in the predefined priority order. Then, the tasks are
reallocated onto the functional units with higher priority. Therefore, this stage is also called task
reallocation stage. The main purpose of this stage is to choose an appropriate functional unit on
which the current task can finish as early as possible.
 If the reallocated task and the task in issue stage are requesting the same functional unit, we give
the tasks in the mapping stage priority and the tasks in the issue stage will stall until there is an
available functional unit, because the task in mapping stage can finish execution earlier.

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 17

 4) Execution: The functional unit begins execution once it has received its operands. When the
result is ready, it notifies the scheduling processor that it has completed execution. Task distribution
and data transfer are both performed through an on-chip interconnect. Using the hardware
interconnects the execution results are returned through interrupts. One interrupt controller is
integrated to detect interrupt request signals from all the interconnect channels. The interrupt handler
assigns the variables with results. In our proposed architecture, since the results from different tasks
may be transferred back at the same time, a first-come-first-serve policy is used to deal with
interrupts, and no interrupt preempt is supported.

Section III
Proposed System
Scheduling based on Particle Swarm Optimization
 In this section, we present a scheduling heuristic for dynamically scheduling workflow
applications. The heuristic optimizes the cost of task-resource mapping based on the solution given
by particle swarm optimization technique.

Particle Swarm Optimization (PSO)
 Particle Swarm Optimization (PSO) is a swarm-based intelligence algorithm [8] influenced by
the social behavior of animals such as a flock of birds finding a food source or a school of fish

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 18

protecting themselves from a predator. A particle in PSO is analogous to a bird or fish flying
through a search (problem) space. The movement of each particle is co-ordinate by a velocity which
has both magnitude and direction. Each particle position at any instance of time is influenced by its
best position and the position of the best particle in a problem space. The performance of a particle
is measured by a fitness value, which is problem specific. The PSO algorithm is similar to other
evolutionary algorithms. In PSO, the population is the number of particles in a problem space.
Particles are initialized randomly. Each particle will have a fitness value, which will be evaluated by
a fitness function to be optimized in each generation. Each particle knows its best position p best and
the best position so far among the entire group of particles g best. The p best of a particle is the best
result (fitness value) so far reached by the particle, whereas g best is the best particle in terms of
fitness in an entire population. In each generation the velocity and the position of particles will be
updated as in Eq 6 and 7, respectively.
 The PSO algorithm has been introduced by Kennedy and Eberhartin 1995 [6], [24]. According
to the PSO algorithm uses two components:

a. The scheduling heuristic as listed in Algorithm 1
b. The PSO steps for task-resource mapping optimization as listed in Algorithm 2.

Algorithm 1: Scheduling Heuristic

1: Calculate average computation cost of all tasks in all compute resources.
2: Calculate average cost of (communication/size of data between resources.
3: Set task node weight wkj as average computation cost.
4: Set edge weight ek1, K2 as size of file transferred between tasks.
5: Compute PSO ({ti}) /* a set of all tasks i k*/.
6: repeat.
7: for {ti}T do.
8: Assign tasks {ti} to resources {pj} according to the solution provided by PSO.
9: end for.
10: Dispatch all the mapped tasks.
11: Wait for polling time.
12: Update the ready task list.
13: Update the average cost of communication between resources according to the current

network load.
14: Compute PSO ({ti}).
15: until there are unscheduled tasks.

Algorithm 2: PSO algorithm.

1: Set particle dimension as equal to the size of ready tasks in {ti} T.
2: Initialize particles position randomly from PC =1... j and velocity vi randomly.
3: For each particle, calculate its fitness value as in Equation4.

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 19

4: If the fitness value is better than the previous best pbest, set the current fitness value as the
new pbest.

5: After Steps 3 and 4 for all particles, select the best particle as gbest.
6: For all particles, calculate velocity using Equation 6 and update their positions using

Equation 7.
7: If the stopping criteria or maximum iteration is not satisfied, repeat from Step 3.

Graph Analysis
 Every test case has been run both dynamically and statically. Presents the execution time of each
test case. We take four pillars in one group to illustrate four kinds of time cost. The first pillar stands
for time consumption of serial execution, that is to say, the tasks are sent serially. The second pillar
indicates the execution time of task sequences using dynamic scheduling method. The tasks are sent
to scheduling processor with run-time score boarding running on it. The third pillar represents the
execution time of task sequences in static preanalysis way (the tasks are preprocessed by TDA
before sent to hardware platform). The last pillar refers to the ideal parallel execution time of tasks
ignoring overheads. There are four groups of pillars in a diagram indicating the test cases with
different dependence degrees, ranging from 25% to 100%. In addition, the average execution time of
one task has been configured from 5k to 160k cycles and one diagram stands for one configuration.

 Speedup comparison. In each group, the left bar is the speedup using the dataflow execution, the
middle bar is the practical speedup on our experimental platform, and the right bar is the ideal
speedup using our platform.

Volume 3 Issue 1 June 2017 www.irjes.psyec.edu.in

International Research Journal of Engineering Sciences 20

Execution Time

Conclusion
 According to this paper the application of the instruction-levels scoreboarding technique to the
task level that is commonly executed in current-day heterogeneous MPSoCs. Furthermore, we
introduced both static and dynamic implementations of scoreboarding in software. The static
implementation is to obtain the dataflow graph prior to the execution. The dynamic implementation
analyzes the intertask dependences at run time.
 We prototyped our approaches on an FPGA platform with two scenarios. The first scenario
entails four manually composed test cases with different dependence degrees, and the second
scenario entails the JPEG encoding as a real-life application. Our experimental results show that our
approach can achieve 95.75% 98.68% of the theoretical speedup. Finally, we performed an analysis
such as when to choose for either of our approaches (static versus dynamic).
 As future work, there are numerous directions worth pursuing. We plan to study more hardware
extensions, investigate how the scoreboarding approach can be applied to high-performance DSP or
GPU cores where multiple functional units or vectors may execute in massive parallel, and
investigate how the scoreboarding scheme works under reconfigurable fabric conditions to further
improve the performance.

References

1. IBM J.
Res. Develop., vol. 11, no. 1, pp. 25 33, 1967.

2.
Proceedings, IEEE International Conference on, vol. 4, (1995), pp. 1942-1948.

3. D. Koch, C. Beckhoff, and J. Teich, communication architecture for complex runtime
reconfigurable systems and its implementation on spartan- Proc. ACM/SIGDA
Int. Symp. Field Program. Gate Arrays, 2009, pp. 253 256.

4. E. Lübbers and
ACM Trans. Embedded Comput. Syst., vol. 9, no. 1, 2009, Art. ID 8.

