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Abstract

In this paper, we propose a new structure of FPGA based on Low Power MRAM technology; we name it LP-
MFPGA (magnetic FPGA). FPGA based on SRAM technology has been developed in the last years, because
of its high speed and near limitless number of reprogramming, however SRAM is volatile thereby the
configuration information and the intermediate data will be lost when power is turned off. By using MTJs
(magnetic tunnel junction) as the storage elements of FPGA, we can realize the non-volatility of FPGA, and
then we will not need the external memory. In our simulation, the start-up time of circuit can be decreased up
to some hundred pico seconds. Except for the rapid start-up time, we can also configure the algorithm and
logic function of the FPGA circuit very simply and rapidly. The other advantage of using LP-MRAM
technology is that we will not enlarge the circuit surface, because the storage element MTJs are on the
semiconductor surface. The proposed cell is dynamically reconfigurable in the background, which makes it a
proper alternative to replace the SRAM cells of conventional field-programmable gate arrays (FPGAs) for the
development of NV-FPGAs .In this design the cache memory architecture allows to change the memory
organization and size of its memory by using a cache size controller unit and way controller unit, to improve
the processor performance and reduces the energy consumption, and using all available memory size for all
possible organization that can be selected. The results show the simulation of the design. This design is
synthesized using (Xilinx ISE Design Suite 12.1) and simulated using (Xilinx 1Sim simulator).

Introduction

Engineering education at Universities are always suffering from the mismatches between rapidly
advancing technology at the side of industry and slowly evolving course materials at the side of
University. In the major of computer science and computer engineering, such mismatches seem to
be more frequently observed than other science and technology department since the IT technologies
have been advanced faster than others. To solve the IT education problems, IEEE Computer
Education Society and other IT related society have worked on the education issues from few
decade ago. In a current commercial computing system, many core processors are major products of
many chip manufacturing vendors (e.g., Intel, AMD, nVidia) [1, 2, 3, 4]. Quad or hexa-core
processors are not only available for high-performance computing but also available for general
computing in desktop PC computers. Moreover, those many core systems are also used in mobile
phones. However, in the undergraduate course work of computer science (CS) or computer
engineering (CE), there is not yet enough classes for many core system architecture and
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programming. In consequence, a many core processor is one topic of such mismatches paradigm
happen between academia and industry. Recently, there have been parallel programming classes in
which the lectures on practical CUDA or Open CL parallel programming languages are provided [5,
6]. However, it seems that there is no enough class on the many core processor at the viewpoint of a
computer architecture. Some advanced chapters of textbooks in computer architecture classes cover
the theoretical points of modern high-performance many core processor architectures, but they do
not provide actual design or In the literatures of CS and CE educations, there have been many work
so far with long history for supporting teaching materials and for establishing course contents that
are efficiently deliverable to CS and CE majored university students with better understanding [9].
In [10], the authors have develop a computer-aided teaching package for teaching a processor
architecture. The CAT is composed of an assembler and a graphics simulator. In the study, a simple
780 model is used as a processor model. Similar to [10], a simple processor simulator has been
developed as a teaching tool for first-year undergraduates [11]. As a program run on the simulator,
the tool shows a snapshot of the processor internals such as register values and program counter. In
[12], simple micro-architectures are used as a processor education model for first-year students of
computer science with a graphic tool that visualize the operations of the micro-architectures. The
authors in [13] have presented a graphical and interactive tools for reduced instruction set computer
processor and memory simulator. Through those visualizing tools, undergraduate students can
actively learn theoretical concepts covered in computer architecture classes. It is a unique feature of
[13] that the simulator can be configured into processors of having many different levels of
complexity from a simple processor without caches or pipelines to a highly complex one with
caches and superscalar execution. The core idea behind [10, 11, 12, 13] is supporting visualization
tools for better understanding of computer architecture operations. In addition to [10, 11, 12, 13],
many of similar visualization approaches have been performed so far in the computer science
education society. Another research trend of the processor education in CS / CE is employing an
FPGA devices. The programmability of the FPGA is a very fascinating feature in processor design
educations because students can make real working processor chip by downloading their designs to
the FPGA as opposed to just experimenting software-based simulations. Furthermore, unlike ASIC
designs that require at least few months for their implementations, the FPGA device provide a quick
verification/test cycle and easy modification capability. Consequently, students can experience all
the process of designing a actual product by working on designing, implementing, testing, and
debugging processors using a commercial FPGA development boards [14]. Many educational
purpose FPGA development boards are available at the University Programs provided by main
FPGA chip vendors such as Altera and Xilinx [15, 16]. In[17, 18, 19, 20], an FPGA device has been
used as their educational teaching platforms for demonstrating real working processor to students. In
[21], the authors have discussed some usage of a FPGA device in teaching processor design class.
Most importantly, students can have much motivation toward their learning for computer
architecture because developing a real working processor can be a unique experiences. Our goal of
work is to provide the educational processor architecture model that follows the recent trend of
microprocessor market so that students can feel much higher motivation for their learning.
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Problem Identification

Indeed, from the 1990s, the researchers concentrated on innovation and the implementation of a
new design: "co-design". However, until the end of the design of dedicated systems is not
implemented than on printed circuit boards. Today, the technological development of Submicron
with an integration rate of more than one million of transistors has opened the door to the
implementation of these systems on a single Chip. This new generation of embedded systems (SoC:
"System on Chip") allows to master problems even more complex due to the fact that with a single
chip performance (MIPS or FLOPS) higher than those that can be realized with a card. A key phase
in the design of SoCs is integration of IP ("Intellectual Properties") blocks that makes operation
difficult and expensive in design time. Few studies have been interested in this problem of synthesis
communication interface. The constant need for better, faster and more power-efficient electronic
systems, has stimulated the need for innovation in every design level. For years, engineers have been
pushing the boundaries of Synchronous design, inventing ingenious ways to meet the requirements
posed by the electronics industry. Recent years though, have seen an increased focus on Self —
Timed system design as an alternative. This paper is a technical report detailing the design of an
Asynchronous Memory Controller module.

Existing Work

The dynamic memory controller plays an important role in system-on-a-chip (SoC) designs to
provide enough memory bandwidth through external memory for DSP and multi-media processing.
As the multimedia applications are growing rapidly past a decade. The applications of multi-media
for processing high resolution video, data and audio sequences are known to require a high speed
and high-density memory port. The memory is required for data storage in real time applications, the
memory controllers support DDR3/DDR2/DDR/SDRAM memories and it can be configured
according to their requirements. In spite much research on performance improvement, the external
memory performance is lagging. Hence the memory controller is essential. The proposed
architecture of multiport memory controller is designed for flexible communication between the
master and the slave ports and also the communication speed is increased as the design contains a
number of buffers for, and also embedded memory for configuration storage and an arbiter including
round robin scheduling scheme for scheduling the read/write accesses. The design technique
provides flexible systems and independent from other system architecture. The design is modelled in
Altera and the read/write simulation results are acquired in Modelsim 6.6a using an external DDR3
SDRAM memory.

Lerroelectric RAM history

The development of FRAM dates back to the early days of semiconductor technology. The idea
was first proposed in 1952, but it took many years before the idea started to be developed properly
as the technologies required to implement it did not exist. Some work on the technology was started
in the 1980s, and then in the early 1990s a part of NASA undertook work into the technology for
detecting UV radiation pulses. However around 1999 the first devices were produced and since then
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companies including Ramtron, Fujitsu, Texas Instruments, Samsung, Matsushita, Infineon and other
have been using the technology.

FRAM usage
Currently ferroelectric RAM is not as widely used as many of the more established technologies

including DRAM and Flash. These technologies have become well entrenched and their use is
widespread. As developers often tend to rely on trusted technologies that are guaranteed to deliver
the performance they require, they are often reluctant to use technologies like FRAM that are not
guaranteed to deliver. Also issues like memory density that limit the size of memory available have
caused them not to be so widely used. However FRAM technology is now being embedded into
chips using CMOS technology to enable MCUs to have their own FRAM memories. This requires
fewer stages than the number required for incorporating Flash memory onto MCU chips, thereby
providing some significant cost reductions.
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Ferroelectric
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Figure 1 Basic Ferroelectric Memory Cell

A further advantage, apart from the non-volatile nature of the memory is its very low power
consumption which lends itself admirably to use within MCUs where power consumption is often a
key issue.

Proposed Hierarchical Test Integration Architecture

The proposed hierarchical test integration architecture for 3D ICs. The test integration
architecture consists of two control interfaces, the master control interface (MCI) and the slave
control interface (SCI), for controlling DFT circuits within dies and handling test operations of a 3D
IC. If a 3D IC has N dies, one MCI is integrated with the master die (i.e., the bottom die) and each
die of N — 1 non-bottom dies has an individual SCI. Furthermore, if a 3D IC with hierarchical
designs, the number of dies with MCI in the 3D IC is larger than 2. As Fig. 1(a) shows, the TCK,
TDI, TMS, and TDO are the test pads of each die. The TDITD or TDITU in a layer denotes the TDI
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port connected to the TSV in which the test data is transported from the lower layer or higher layer,
respectively. The TDOTD or TDOTU denotes the TDO port connected to the TSV in which the test
data is sent to the lower layer or higher layer, respectively. When the board-level test is performed,
only the MCI in the bottom die is enabled and the MCIs and SCIs in non-bottom dies are idled.
When the 3D IC testing is considered, the instructions for the MCIs and SCIs are loaded in a
hierarchical way. After the instructions in the test interfaces are loaded, the DFT circuits in the 3D
IC can be accordingly controlled. Detailed test control flow will be introduced later.Clearly, the test
interfaces transport the test data through the serial TDI-TDO path. Therefore, the parallel test data
transportation mechanism should be implemented to reduce the testing time of the 3D IC. As Fig.
I(a) shows, an inter-die test access mechanism (TAM) can be implemented for test data
transportation among the dies of a 3D IC. TAM architectures proposed for SOC testing also can be
used to implement the inter-die TAM. Hereafter, we thus do not cover the design of inter-die TAM.

Result and Discussion
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Figure 2 Base Area @ 202 Slices

The Area analysis of Base system is shown in above fig 2. This analysis mainly concentrated on
the total number of slice registers and the slice LUTs in the entire system and the number of slice
registers and the slice LUTs used to obtain the output. Hence, the available numbers of slice
registers are 93,296 and the used numbers of slice registers are 202. The available slice LUTs are
46,560 and the used number of slice LUTs are 202. The utilization of slice register is 1% and the
slice LUT is 4%.
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Figure 3 Base Power @ 63.3%(0.064W)

The Power analysis of Base System is shown in above fig 3. This analysis mainly concentrated
on the number IOs in the entire system to obtain the output. In the entire system, the available

numbers of [0s are 206 and the 1Os used to obtain the output are 348. The utilization of power is
63.3%(0.064W).
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Figure 4 Base Speed @ 306.208MHz
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The Speed analysis of Base is shown in the above fig 4. This analysis depends upon the

maximum range of frequency. Hence, the maximum range of frequency used to generate the output
is 306.202 MHz.
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Figure 5 Base Latency @ 3.266ns

The Delay analysis of Base System is shown in above fig 5. The Main concentration of delay
analysis is based on the time taken to obtain the output from the time of applying input. Hence, the
total time required to XST the completion is 3.266ns.
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Figure 6 Phase 1 Area @ 84 Slices
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The Area analysis of Proposed system is shown in above fig 6. This analysis mainly
concentrated on the total number of slice registers and the slice LUTs in the entire system and the
number of slice registers and the slice LUTSs used to obtain the output. Hence, the available numbers
of slice registers are 93,296 and the used numbers of slice registers are 84. The available slice LUTs
are 46,645 and the used number of slice LUTs are 84. The utilization of slice register and the slice

LUT is 1%.
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Figure 7 Phase 1 Power @ 35.2% (0.064W)

The Power analysis of Proposed is shown in above fig 7. This analysis mainly concentrated on
the number 1Os in the entire system to obtain the output. In the entire system, the available numbers
of 10s are 46 and the IOs used to obtain the output are 348. T the utilization of power is

35.2%(.064W).
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Figure 8 Phase 1 Speed @ 680.156MHz

The Speed analysis of Proposed is shown in the above fig 8. This analysis mainly depends on
the maximum range of frequency. Hence, the maximum range of frequency used to generate the
output is 680.186MHzMHz.
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Figure 9 Phase 1 Latency @ 1.470ns
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The Delay analysis of proposed system is shown in above fig 9. The Main concentration of
delay analysis is based on the time taken to obtain the output from the time of applying input.
Hence, the total time required to XST the completion is 1.470ns
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Comparison Table for Performance Analysis

Table 1 Performance Analysis Comparison

Area (%) | Speed (MHz) Pow?r Delay (secs)
Consumption (W)
202 63.3
Base System 306.208 3.266
202 63.3
Proposed System 84 680.156 35.2 1.470

The above comparison table shows the various parameter metrics such as Area, Speed, Power
and Delay respectively. While comparing both Base system and proposed system, the Proposed is
more efficient.

Conclusions

The properties of five manufactured SCMs are presented to illustrate trade-offs available to tune
performance for leakage power, area cost, robustness, and access time. Lowest leakage power is
achieved using a D-latch as storage element that has stacked transistors with longer channels. Using
area dense latch architecture with fewer transistors and 3-state drivers as read-logic results in the
lowest area cost.

The D-latch has the highest static noise margin, and therefore, offers the lowest retention
voltage. Implementing the read-logic with CMOS mixes improves the read access performance over
3-state driver based read-logic

The main objective in designing the cell by using Magnetic Random Access Memory (MRAM)
is to reduce the total power consumption and data reliability. Since the MRAM is the non-volatile
memory so in the absence of power supply also it provides reliability, and it consumes less amount
of input supply voltage for read and write operation.
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Furthermore, faster GP transistors improve access-time at a cost of leakage power increase. A
flexible memory is designed by using an SCM instead of an SRAM macro, e.g., allowing a change
of the number of read/write ports in the RTL code.

Furthermore, minimal engineering effort is required to change the performance properties of the
SCM, i.e., replacing the storage element with a latch optimized for area cost, leakage power or
access time. As an example, a single redesigned latch makes the area dense dual bit pass-latch push
the area break-even point between SCMs and full-custom sub-VthSRAMs to 2 kb for single-port
SRAM and 4-6 kb for dual-port SRAM.

References

1. Multi-core processor, http://en.wikipedia.org/wiki/Multi-core processor.

2. Intel MIC, http://en.wikipedia.org/wiki/Intel MIC.

3. Bulldozer (microarchitecture), http://en.wikipedia.org.

4. Comparison of Nvidia graphics processing units, http://en.wikipedia.org/wiki/Comparison
of Nvidia_ graphics_processing_units.

5. Vidia Corporation, CUDA C Programming Guide, http://docs.nvidia.com/cuda/cuda-c-
programming-guide/.

6. Khronos Group, OpenCL Overview, http://www.khronos.org/opencl/.

7. A. Patterson and J. L. Hennessy, “Computer Organization and Design: The Hardware/Software
Interface”, Morgan Kaufmann, (1994).

8. D. Harris and S. Harris, “Digital Design and Computer Architecture”, 2st Edition, Morgan
Kaufmann, (2012).

9. IEEE Education Society, http://www.ewh.ieee.org/soc/es/esinfo.html.

10. H. B. Diab and I. Demashkieh, “A computer-aided teaching package for microprocessor systems
education”, IEEE Transactions on Education, vol. 34, no. 2, (1991).

11. W. D. Henderson, “Animated models for teaching aspects of computer systems organization”,
IEEE Transactions on Education, vol. 37, no. 3, (1994).

12. J. R. Arias and D. F. Garcia, “Introducing computer architecture education in the first course of
computer science career”’, IEEE Computer Society, (1999), pp. 37-40.

13. M. L. Garcia, S. Rodriguez, A. Perez and A. Garcia, “p88110: A Graphical Simulator for
Computer Architecture and Organization Courses”, IEEE Transaction on Education, vol. 52, no.
2, (2009), pp. 248-256.

14. Y. Zhu, T. Weng and C. Cheng, “Enhancing learning effectiveness in digital design courses
through the use of programmable logic boards”, IEEE TRAN. Education, vol. 52, no. 1, (2009)
February, pp. 151-156.

15. Altera University Program, http://www.altera.com/education/univ/unv-index.html. [16] Xilinx
University Program, http://www .xilinx.com/university/.

International Research Journal of Engineering Sciences 74



