DECOMPOSITIONS OF TOPOLOGICAL SETS

A. Parveen Banu

Assistant Professor, Department of Mathematics, Lady Doak College, Madurai, Tamil Nadu, India

M. Mohamed Sheriff

Associate Professor & Head, Department of Mathematics, Hajee Karutha Rowther Howdia College Uthamapalayam, Tamil Nadu, India

Introduction

 α - δ -open sets, pre- δ -open sets, semi- δ -open sets, strongly β - δ -open sets and b- δ - open sets in topological spaces were studied by [] respectively. In this paper, we introduce new classes of sets by using losed sets in topological spaces and study their basic properties; and their connections with other types of topological sets. Moreover some new decompositions of topological sets are obtained.

Preliminaries

We recall the following definitions which are useful in the sequel.

Definition 2.1. A subset A of (X, τ) is called

(1) α -open [10] if A \subseteq int(cl(int(A)));

(2) preopen [9] if $A \subseteq int(cl(A))$;

(3) semi-open [7] if $A \subseteq cl(int(A))$;

(4) β -open [1] if A \subseteq cl(int(cl(A)));

(5) b-open [2] if $A \subseteq int(cl(A)) \cup cl(int(A))$.

The family of all α -open (resp. preopen, semi-open, β -open, b-open) sets of X is denoted by $\alpha O(X)$ (resp. PO(X), SO(X), $\beta O(X)$, BO(X)).

Definition 2.2. A subset A of (X, τ) is called

(1) a Λ -set if $A = A^{\Lambda}$ where $A^{\Lambda} = \cap \{G : A \subseteq G, G \in \tau\}$ [8].

(2) a \wedge_{α} -set if A = $\wedge \alpha(A)$ where $\wedge_{\alpha}(A) = \cap \{G : A \subseteq G, G \in \alpha O(X)\}$ [5].

(3) a \wedge_s -set if A = \wedge s(A) where \wedge_s (A) = \cap {G : A \subseteq G, G \in SO(X)} [4].

(4) a \wedge_p -set if $A = \wedge p(A)$ where $\wedge_p(A) = \cap \{G : A \subseteq G, G \in PO(X)\}$ [4].

(5) a \wedge_{β} -set if A = $\wedge\beta(A)$ where $\wedge_{\beta}(A) = \cap\{G : A \subseteq G, G \in \betaO(X)\}$ [11].

(6) a \wedge_b -set if A = $\wedge b(A)$ where $\wedge_b (A) = \cap \{G : A \subseteq G, G \in BO(X)\}$ [6].

Definition 2.3. A subset A of (X, τ) is called λ -closed [3] if A =L \cap F, where L is a Λ -set and F is closed.

Characterizations of generalized $\lambda - \delta - \alpha$ **closed sets**

Definition 3.1:

A subset A of (X, τ) is called a C_{δ} set if $A = L \cap F$, where L is open and F is $pre - \delta$ - closed set.

A subset A of (X, τ) is called a BC_{δ} set if $A = L \cap F$, where L is open and F is $b - \delta$ - closed set.

A subset A of (X, τ) is called an η_{δ} set if $A = L \cap F$, where L is open and F is $\alpha - \delta$ - closed set.

Definition 3.2

A subset A of (X, τ) is called $-\delta - \alpha$ closed if $A = L \cap F$, where L is a set and F is $\alpha - \beta$ δ closed set.

A subset A of (X, τ) is called a DC_{δ} - set if if $A = L \cap F$, where L is open and F is semi δ closed set.

A subset A of (X,τ) is called a sFC_{δ} - set if $ifA = L \cap F$, where L is open and F is strongly $\beta - \delta$ closed set.

Lemma 3.3

In (X, τ) , the following statements hold. Every $\alpha - \delta$ closed set is $\lambda - \delta - \alpha$ closed. Every λ set is $\lambda - \delta - \alpha$ closed.

Example 3.4

Let $X = \{a, b, c, d\}$ and $= \{\Phi, X, \{d\}, \{a, c\}, \{a, c, d\}\}$. Then $\{d\}$ is $\lambda - \delta$. $-\alpha$ closed but not $\alpha - \delta$ closed set. {a,b,c} is $\lambda - \delta - \alpha$ closed set but not λ set.

Lemma 3.5

For a subset A of (X, τ) , the following conditions are equivalent A is $\lambda - \delta - \alpha$ closed $A = L \cap \alpha cl_{\delta}(A)$, where L is a λ set. $A = A^{\lambda} \cap \alpha cl_{\delta}(A).$

Lemma 3.6

In (X, τ) , the following statements hold. Every $\alpha - \delta$ closed set is η_{δ} set. Every η_{δ} set is $\lambda - \delta - \alpha$ closed.

Example 3.7. In Example 3.4, $\{d\}$ is an η_{δ} -set but not $\alpha - \delta$ closed.

Definition 3.8. A subset A of (X, τ) is said to be

 $\delta_{\alpha a}$ -closed if $\alpha cl_{\delta}(A)$ U whenever A U and U is open. δ_{as} -closed if $scl_{\delta}(A)$ U whenever A U and U is open. δ_{ap} -closed if $pcl_{\delta}(A)$ U whenever A U and U is open. δ_{asp} -closed if $s\beta cl_{\delta}(A)$ U whenever A U and U is open. δ_{gp} -closed if $bcl_{\delta}(A)$ U whenever A U and U is open.

Lemma 3.9. A subset A of (X, τ) is $\delta_{\alpha g}$ -closed if and only if $\alpha cl_{\delta}(A) A^{\lambda}$.

Theorem 3.10. For a subset A of (X, τ) , the following conditions are equivalent.

A is $\alpha - \delta$ closed.

A is $\delta_{\alpha g}$ -closed and an η_{δ} -set.

A is $\delta_{\alpha q}$ -closed and $\lambda - \delta - \alpha$ closed.

Proof. (1) \Rightarrow (2) and (2) \Rightarrow (3): Obvious.

(3) \Rightarrow (1): Since A is $\delta_{\alpha g}$ -closed, by Lemma 3.18, $\alpha c l_{\delta}(A) A^{\lambda}$. Since A is $\lambda - \delta - \alpha$ closed, by Lemma 3.9, $A = A^{\lambda} \cap \alpha c l_{\delta}(A) = \alpha c l_{\delta}(A)$. Hence A is $\alpha - \delta$ closed.

Remark 3.11. The following example shows that the concepts of $\delta_{\alpha g}$ -closed sets and η_{δ} –sets are independent of each other.

Example 3.12.(1) In Example 3.4, $\{d\}$ is an η_{δ} -set but not $\delta_{\alpha g}$ -closed. (2) In Example 3.4, $\{b, c, d\}$ is $\delta_{\alpha g}$ -closed but not an η_{δ} -set.

Remark 3.13. The following example shows that the concepts of $\delta_{\alpha g}$ -closed sets and $\lambda - \delta - \alpha$ closed sets are independent of each other.

Example 3.14. (1) In Example 3.4, $\{d\}$ is $-\delta - \alpha$ closed but not $\delta_{\alpha g}$ closed. (2) In Example 3.4, $\{a, b, c\}$ is $\delta_{\alpha g}$ -closed but not $\lambda - \delta - \alpha$ closed.

Definition 3.15. A subset A of a (X, τ) is called

 $\lambda - \delta$ -semi-closed if $A = L \cap F$, where L is a λ set and F is semi - δ -closed set.

 $-\delta$ -pre-closed if $A = L \cap F$, where L is a set and F is $pre - \delta$ -closed set.

 $-\delta - \beta$ -closed $A = L \cap F$, where *L* is a set and *F* is *strongly* $\beta - \delta$ -closed set.

 $-\delta - b$ - closed if $A = L \cap F$, where L is a set and F is $b - \delta$ - closed set.

Lemma 3.16. A subset $A(X, \tau)$ is

$$\begin{split} &\delta_{gs}\text{-closed if and only if } scl_{\delta}(A) \ A^{\lambda} \ . \\ &\delta_{gp}\text{-closed if and only if } pcl_{\delta}(A) \ A^{\lambda} \ . \\ &\delta_{gsp}\text{-closed if and only if } s\beta cl_{\delta}(A) \ A^{\lambda} \ . \\ &\delta_{gb}\text{-closed if and only if } bcl_{\delta}(A) \ A^{\lambda} \ . \end{split}$$

Corollary 3.17. For a subset A of a (X, τ), the following conditions are equivalent

(i) A is semi $-\delta$ -closed.

A is δ_{gs} -closed and a DC_{δ} -set.

A is δ_{gs} -closed and $\lambda - \delta$ -semi-closed. (i) A is pre- δ -closed A is δ_{gp} -closed and a C_{δ} -set. A is δ_{gp} -closed and $\lambda - \delta$ -pre-closed. (i) A is strongly $\beta - \delta$ -closed A is δ_{gsp} -closed and a sFC_{δ} -set A is δ_{gsp} -closed and $\lambda - \delta - \beta$ -closed. (i) A is $b - \delta$ -closed A is δ_{gb} -closed and a BC_{δ} -set. A is δ_{gb} -closed and $\lambda - \delta - b$ -closed. Proof. The proof is similar to that of Lemma 3.5 and Theorem 3.10.

Remark 3.18. The following examples show that the concepts of

 $\begin{array}{l} \delta_{gs} - \text{closed sets and } DC_{\delta} - \text{sets are independent of each other.} \\ \delta_{gs} - \text{closed sets and } \lambda - \delta - \text{semi-closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } C_{\delta} - \text{sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and} \lambda - \delta - \text{pre-closed sets are independent of each other.} \\ \delta_{gsp} - \text{closed sets and } sFC_{\delta} - \text{sets are independent of each other.} \\ \delta_{gsp} - \text{closed sets and } \lambda - \delta - \beta - \text{closed sets are independent of each other.} \\ \delta_{gsp} - \text{closed sets and } \lambda - \delta - \beta - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - \beta - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - \beta - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed sets and } \lambda - \delta - b - \text{closed sets are independent of each other.} \\ \delta_{gp} - \text{closed s$

Example 3.19.

(1) In Example 3.4, $\{a, c, d\}$ is a DC_{δ} -set but not δ_{gs} -closed.

(2) In Example 3.4, $\{c\}$ is δ_{gs} -closed but not a DC_{δ} -set.

Example 3.20.

(1) In Example 3.4, $\{a, c, d\}$ is $\lambda - \delta$ –semi-closed but not δ_{gs} –closed.

(2) In Example 3.4, $\{a, b\}$ is δ_{gs} -closed but not $\lambda - \delta$ -semi-closed.

Example 3.21.

Let $X = \{a, b, c, d\}$ and $= \{\Phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then

Example 3.22.

(1) In Example 3.21, $\{a\}$ is $\lambda - \delta$ -pre-closed but not δ_{gp} -closed.

(2) In Example 3.21, $\{a, d\}$ is δ_{gp} closed but not $\lambda - \delta$ -pre-closed.

Example 3.23.

- (1) In Example 3.21, $\{a, b, c\}$ is a sFC_{δ} -set but not δ_{gsp} -closed.
- (2) In Example 3.21, {*d*} is δ_{qsp} -closed but not a sFC_{δ} -set.
- (2) In Example 3.21, {*d*}is δ_{ap} -closed but not a BC_{δ} -set.

Example 3.26.

(1) In Example 3.21, {a, b} is λ - δ - b - closed but not δ_{gp} - closed.
(2) In Example 3.21, {d} is δ_{gp} - closed but not λ - δ - b - closed.

Definition 3.27.

A subset A of a (X, τ) is called

- (1) $\lambda \delta \alpha g^*$ -closed if $A = L \cap F$, where L is a λ_{α} set and F is δ -closed.
- (2) $\lambda \delta sg^*$ -closed if $A = L \cap F$, where L is a λ_s set and F is δ -closed.
- (3) $\lambda \delta pg^*$ -closed if $A = L \cap F$, where *L* is a λ_p set and *F* is δ -closed.
- (4) $\lambda \delta\beta g^*$ -closed if $A = L \cap F$, where *L* is a λ_β set and *F* is δ -closed.
- (5) $\lambda \delta bg^*$ -closed if $A = L \cap F$, where L is a λ_b set and F is δ -closed.

Definition 3.28. A subset A of (X, τ) is called

(1) an $\delta - \alpha lc$ -set if $A = L \cap F$, where L is a α open and F is δ -closed.

(2) an $\delta - slc$ -set if $A = L \cap F$, where L is a semi- open and F is δ -closed.

Lemma 3.29.

Every λ_{α} -set (resp. λ_s -set, λ_p set, λ_{β} -set, λ_b set) is $\lambda - \delta - \alpha g^*$ -closed (resp. $\lambda - \delta - gg^*$ -closed, $\lambda - \delta - \beta g^*$ -closed, $\lambda - \delta - \beta g^*$ -closed, $\lambda - \delta - \beta g^*$ -closed).

Example 3.30.

Let $X = \{a, b, c\}$ and $= \{\Phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $\{c\}$ is $\lambda - \delta - \alpha g^*$ -closed but not a λ_{α} -set.

Example 3.31.

Let R, N, Q^* and Q the set of real numbers, the set of natural numbers, the set of irrational numbers and the set of rational numbers respectively. Suppose= { $\Phi, R, N, Q^*, Q^* \cup N$ }. Then $H = Q \cap R \setminus N$ is δ -closed and hence $\lambda - \delta - sg^*$ -closed but not λ_s -set. **Example 3.32**.

Let $X = \{a, b, c\}$ and $\tau = \{\Phi, X, \{a\}, \{c\}, \{a, c\}\}$. Then $\{b\}$ is $\lambda - \delta - pg^*$ -closed but not a λ_p -set.

Volume 5	Issue 1	June 2019	www.irjes.psyec.edu.in

Example 3.33.

In Example 3.31, $H = Q \cap R \setminus N$ is δ -closed and hence $\lambda - \delta - \beta g^*$ -closed but not λ_{β} -set.

Example 3.34.

In Example 3.31, H=Q\RnN is -closed and hence $\lambda - \delta - bg^*$ -closed but not λ_b -set.

Lemma 3.44.

For a subset A of a (X, τ), the following conditions are equivalent.

- (1) A is $\lambda \delta \alpha g^*$ -closed.
- (2) $A = L \cap cl_{\delta}(A)$, A where L is a λ_{α} -set. $A = \lambda_{\alpha}(A) \cap cl_{\delta}(A)$

References

- 1. M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, -open sets and continuous mappings, Bull. Fac. Sci. Assuit Univ., 12(1983), 77-90.
- 2. Andrijevic, On b-open sets, Mat. Vesnik, 48(1996), 59-64.
- 3. F. G. Arenas, J. Dontchev and M. Ganster, On -sets and the dual of generalized continuity, Questions Answers Gen. Topology, 15(1)(1997), 3-13.
- 4. M. Caldas and J. Dontchev, G. s-sets and G. s-sets, Mem. Fac. Sci. Kochi. Univer. (Math)., 21(2000), 21-30.
- 5. M. Caldas, D. N. Georgiou and S. Jafari, Study of (,)-closed sets and the related notions in topological spaces, Bull. Malay. Math. Sci. Soc. (2), 30(1)(2007), 23-36.
- M. Caldas, S. Jafari and T. Noiri, On b-sets and the associated topology b, Acta Math. Hungar., 110(4)(2006), 337-345.
- 7. N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 8. H. Maki, Generalized-sets and the associated closure operator in special issue in commemo-ration of Prof. Kazusada IKEDA's Retirement, (1986), 139-146.
- 9. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, Onprecontinuous and weak pre continuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- 10. O. Njastad, On some classes of nearly open sets, Paci c J. Math., 15(1965), 961-970.
- 11. T. Noiri and E. Hatir, _{sp}-sets and some weak separation axioms, Acta Math. Hungar., 103(3) (2004), 225-232.